skip to main content


Search for: All records

Creators/Authors contains: "Phothilimthana, Phitchaya Mangpo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning to predict properties of a large graph is challenging because each prediction requires the knowledge of an entire graph, while the amount of memory available during training is bounded. Here we propose Graph Segment Training (GST), a general framework that utilizes a divide-and-conquer approach to allow learning large graph property prediction with a constant memory footprint. GST first divides a large graph into segments and then backpropagates through only a few segments sampled per training iteration. We refine the GST paradigm by introducing a historical embedding table to efficiently obtain embeddings for segments not sampled for backpropagation. To mitigate the staleness of historical embeddings, we design two novel techniques. First, we finetune the prediction head to fix the input distribution shift. Second, we introduce Stale Embedding Dropout to drop some stale embeddings during training to reduce bias. We evaluate our complete method GST+EFD (with all the techniques together) on two large graph property prediction benchmarks: MalNet and TpuGraphs. Our experiments show that GST+EFD is both memory-efficient and fast, while offering a slight boost on test accuracy over a typical full graph training regime. 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  2. Utilizing memory and register bandwidth in modern architectures may require swizzles — non-trivial mappings of data and computations onto hardware resources — such as shuffles. We develop Swizzle Inventor to help programmers implement swizzle programs, by writing program sketches that omit swizzles and delegating their creation to an automatic synthesizer. Our synthesis algorithm scales to real-world programs, allowing us to invent new GPU kernels for stencil computations, matrix transposition, and a finite field multiplication algorithm (used in cryptographic applications). The synthesized 2D convolution and finite field multiplication kernels are on average 1.5–3.2x and 1.1–1.7x faster, respectively, than expert-optimized CUDA kernels. 
    more » « less
  3. Developing server applications that offload computation and data to a NIC accelerator is laborious because one has to explore the design space of decisions about data placement and caching; partitioning of code and its parallelism; and communication strategies between program components across devices. We propose programming abstractions for NIC-accelerated applications, balancing the ease of developing a correct application and the ability to refactor it to explore different design choices. The design space includes semantic changes as well as variations on parallelization and program-to-resource mapping. Our abstractions include logical and physical queues and a construct for mapping the former onto the latter; global per-packet state; a remote caching construct; and an interface to external application code. We develop Floem, a programming system that provides these abstractions, and show that the system helps explore a space of NIC-offloading designs for real-world applications, including a key-value store and a distributed real-time data analytics system, improving throughput by 1.3--3.6x. 
    more » « less